Using the XactTM Multi-Metals CEMS as a Mercury Monitor on a Coal-Fired Power Plant: A Feasibility Study

Krag A. Petterson, John A. Cooper, Troy Pittenger, Mike Nakinishi
Cooper Environmental
Services, LLC

Joe Doherty, Marty Ladner; Pall Corporation

Executive Summary

- Review of XactTM Design and Operation
- Goals of Feasibility Study
- Results of Laboratory Phase of Study
- Field Deployment and Performance Test Results

The XactTM Multi-Metal CEMS

- Developed by Cooper Environmental Services (CES)
- Developed as a Multi-Metals CEMS
- Based on X-ray Flourescence Analysis (XRF)
- Beta –gauge type reel-to-reel tape drive and sampling technology
- Can measure up to 20 metals simultaneously including Cr, As, Cd, Hg, and Pb

XACTTM SAMPLING AND ANALYSIS

Determination of Stack Concentration

XactTM CEMS

EPA Method 301 Validated for Multi-Metals

EPA SiteCertified

AMP EPA
Approved

~6 Years On-Stack Operations on Hazardous Waste Incinerator

May 2007 – EPA Clean Air Excellence Award

Key Goals of Feasibility Study

- Demonstrate Xact Operation on a Coal Fired Power Plant
- Can the Xact Meet the Mercury Monitoring (PS-12A) Requirements for Initial Certification Specified by the Clean Air Mercury Rule (CAMR)?

PS-12A Initial Certification Requirements (2007) Current PS 12A Requirements Are In Red

Test	Required Frequency	Required Standards	Passing Criteria
7- Day Calibration Check	1 x per day for seven days	ZeroUpscale	5% of Hg Span Value -OR- Less than 1 μg/m³ difference
Linearity Check	Once Measureme	Hg ^o Standard at Low, Mid and entigh Span Values	 10% of reference value 5% -OR- Span Value Less than 1 μg/m³ difference
3-Level System Integrity Check	Once	HgCl ₂ Standard Low, Mid, High Span Values	5% of Span Value 10% of Span Value
Relative Accuracy Test (RATA)	Once	 Ontario Hydro Method 30B (Sorbent Trap) Cooper Environment	20% of Reference Method -OR- Less than 1 μ g/m ³ difference

HgCl₂ and **Hg^o** Generator

- XactTM did not have a HgCl₂ or Hg^o Generator
- Used Commercially Available HovaCalTM
- HovaCalTM operates by evaporating a solution of HgCl₂ on a heated surface
- HgCl₂ Solution of known concentration was metered at a measured flow rate into a measured air flow
- Hg^o is generated by chemically converting the HgCl₂ to elemental Hg (Hova Merc)

Initial Laboratory Tests – XactTM Calibration

- XRF Portion of the Xact Calibrated Using Thin Film Stanckatt Mercury Calibration is
- These standards are typically used for calibration of XRF equipment for the analysis of Ambient Air Filters (EPA IO 3.3) the HgCl₂ and Hg^o Generator

• Flow Usted to Check It.
Meter

Reference Flow

Calibration fQuantitative

ing

QAG Audit :
 Alternative Monitoring Petition

Approved

Initial Laboratory Tests With HovaCalTM HgCl₂ Linearity

Concentration Level	Nominal Concentration (mg/m³)	# of Samples	Average Percent Difference (% of Span)	Pass Test Criteria?
Zero (DI Water)	0	6	0.40%	Yes
Low	2	8	-2.37%	Yes
Low Mid	4	6	-0.69%	Yes
High Mid	11	6	-4.10%	Yes
High	18	8	-4.17%	Yes

Also Passed Current 12A Criteria

Initial Laboratory Tests with HovaCalTM Elemental Hg Linearity

cXactevel	Nominal Concentration	All _{f Sa} T _p es	Average Percent Difference (10)	Pass Te Criteria?
Criter	ia D uri			
Mid	11	6	8.69%	Yes
Evalua High		8	0.45%	Yes

With New PS12A Criteria

Concentration Level	Nominal Concentration (mg/m³)	# of Samples	Average Percent Difference (% of Span)	Pass Test Criteria?
Low	4	7	0.57%	Yes
Mid	11	6	4.46%	Yes
High	18	8	0.45%	Yes

Field Deployment

- XactTM installed at PGE's Boardman Facility
- 585 MW Facility, ESP Controls
- Lab XRF Calibration Used Not Recalibrated in Field
- Installed and operating within2 days
- Side by side comparison with
 Thermo Mercury Freedom Unit
- Two week field deployment
- Performed initial performance specification including:
 - 7 Day Calibration Check
 - System Integrity Check

- Linearity Check
- RATA Method 30B

Field Test Arrangement

Seven Day Drift Test Results

	Zero Drift Results			Upscale Drift Results		
		CAMR	Number		CAMR	Number
	Ave	Rule Met	of Points	Ave	Rule Met	of Points
	Difference	on	CAMR	Difference	on	CAMR
Date	(% of Span)	Average	Rule Met	(% of Span)	Average	Rule Met
3/23/2009	0.00	Yes	9	11.34	No	0
3/24/2009	0.00	Yes	9	6.71	No	1
3/25/2009 ^a	0.00	Yes	9	-6.06	No	3
3/26/2009	0.00	Yes	9	11.47	No	0
3/27/2009	0.00	Yes	9	2.80	Yes	8
3/28/2009	0.33	Yes	9	2.14	Yes	8
3/29/2009	2.37	Yes	9	-2.60	Yes	9

- Zero Drift Met on all Days indicating little loss of Hg
- Difficulty Meeting Upscale Problems with HovaCalTM

Field HgCl₂ Linearity (System Integrity Check)

Field Hgº Linearity

Why we think there was a problem with HovaCalTM

- Visible Rust in Tubing Exiting HovaCalTM
- Problems Maintaining Heating heater would frequently fail requiring the HovaCalTM to cool down and restart
- Were Using HovaCalTM at the Very High End of Recommended Emission Range

Thermo Hg Freedom Comparison

			Ave %
Date(s)	Xact	Thermo	Difference
3/20/2009	8.91	8.49	4.87
3/21/2009	7.12	8.25	-13.52
3/22/2009	6.94	7.96	-12.54
3/23/2009	7.16	7.76	-7.13
3/24/2009	7.28	7.39	-1.53
3/25/2009	7.97	7.14	11.63
3/26/2009	7.55	7.30	3.44
3/27/2009	6.88	6.65	4.00
3/28/2009	6.83	6.54	4.91
3/29/2009	6.90	7.65	-10.67
3/30/2009	7.83	8.89	-12.07
3/31/2009	8.36	8.58	-2.46
All Days	7.42	7.78	-4.09

RATA Results

Conclusions

- CES Xact Can Accurately Measure Mercury in a Coal Fired Power Plant
- If the XactTM had recalibrated to the mercury generator (HovaCalTM) as most Hg CEMS do it would likely have failed the RATA
- It is feasible to use the Xact to Measure Mercury on a Coal Fired Power Plant
 - Need a Mercury Generator Designed to Operate on XactTM Flows

Differences Between XactTM and AF Based Mercury Monitors

- XactTM Requires Longer Sampling Times (15 minutes versus 1 to 2 minutes)
- XRF Calibrations are very stable (1 year or more) AF needs to be recalibrated frequently
- XactTM is less dependant on the accuracy of the Hg generator
- Since XRF is Non Destructive Samples Can be Archived and Potentially Reanalyzed if Data needs to be validated
- XactTM could be used to monitor for other metals
 - PM is a surrogate for HAP Metals
 - If EPA requires PM CEMS on CFPP Xact could potentially be used for Hg and HAP metals
 - Therefore 1 CEMS (multi-metals including Hg) instead of 2 Hg
 CEMS and PM CEMS

QUESTIONS?

Krag Petterson

kragp@cooperenvironmental.com